Abstract

Synthetic and kinetic studies are used to uncover mechanistic details of the reduction of O(2) to water mediated by dirhodium complexes. The mixed-valence Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyanide) complex is protonated by HCl to produce Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (2), which promotes the reduction of O(2) to water with concomitant formation of Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4) (3). Reactions of the analogous diiridium complexes permit the identification of plausible reaction intermediates. Ir(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (4) can be protonated to form the isolable complex Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (5), which reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)(OOH) (6). In addition, 4 reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(η(2)-O(2)) (7), which can be protonated by HCl to furnish 6. Complexes 6 and 7 were both isolated in pure form and structurally and spectroscopically characterized. Kinetics examination of hydride complex 5 with O(2) and HCl furnishes a rate law that is consistent with an HCl-elimination mechanism, where O(2) binds an Ir(0) center to furnish an intermediate η(2)-peroxide intermediate. Dirhodium congener 2 obeys a rate law that not only is also consistent with an analogous HCl-elimination mechanism but also includes terms indicative of direct O(2) insertion and a unimolecular isomerization prior to oxygenation. The combined synthetic and mechanistic studies bespeak to the importance of peroxide and hydroperoxide intermediates in the reduction of O(2) to water by dirhodium hydride complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.