Abstract

Recently, the focus of fuel cell technologies has shifted from light-duty automotive to heavy-duty vehicle applications, which require improving the stability of membrane electrode assemblies (MEAs) at high constant potential. The hydrophilicity of Pt makes it easy to combine with water molecules and then oxidize at high potential, resulting in poor durability of the catalyst. In this work, an ionic liquid [BMIM][NTF2] was used to modify the Pt catalyst (Pt/C + IL) to create a hydrophobic, antioxidant micro-environment in the catalyst layer (CL). The effect of [BMIM][NTF2] on the decay of the CL performance at high constant potential (0.85 V) for a long time was investigated. It was found that the performance attenuation of Pt/C + IL in the high-potential range (OCV 0.75 V) was less than that of commercial Pt/C after 10 h. The Pt-oxide coverage test showed that the hydrophobic micro-environment of the CL enhanced the stability by inhibiting Pt oxidation. In addition, the electrochemical recovery of Pt oxides showed that the content of recoverable oxides in Pt/C + IL was higher than that in commercial Pt/C. Overall, modifying the Pt catalyst with hydrophobic ionic liquid is an effective strategy to improve the catalyst stability and reduce the irreversible voltage loss caused by the oxide at high constant potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.