Abstract

The essential enzyme dUTPase is responsible for preventive DNA repair via exclusion of uracil. Lack or inhibition of the enzyme induces thymine‐less cell death in cells performing active DNA synthesis, serving therefore as an important chemotherapeutic target. In the present work, employing differential circular dichroism spectroscopy, we show that D. mel. dUTPase, a recently described eukaryotic model, has a similar affinity of binding towards α,β‐imino‐dUTP as compared to the prokaryotic E. coli enzyme. However, in contrast to the prokaryotic dUTPase, the nucleotide exerts significant protection against tryptic digestion at a specific tryptic site 20 Å far from the active site in the fly enzyme. This result indicates that binding of the nucleotide in the active site induces an allosteric conformational change within the central threefold channel of the homotrimer exclusively in the eukaryotic enzyme. Nucleotide binding induced allosterism in the D. mel. dUTPase, but not in the E. coli enzyme, might be associated with the altered hydropathy of subunit interfaces in these two proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.