Abstract

Ethanol extracts obtained from two Salvia species, S. triloba and S. dominica, collected from the flora of Jordan, were evaluated for their antiproliferative activity against MCF7 and T47D breast cancer cell lines by the sulforhodamine B assay. The ethanol extracts were biologically active with IC50 values of (29.89 ±0.92) and (38.91 ±2.44) μg/mL for S. triloba against MCF7 and T47D cells, respectively, and (5.83 ±0.51) and (12.83 ±0.64) μg/mL for S. dominica against MCF7 and T47D cells, respectively. Flow cytometry analysis and the annexinV-propidium iodide (PI) assay revealed apoptosismediated, and to a lesser extent necrosis-induced, cell death by the S. triloba and S. dominica ethanolic extracts in T47D cells. The mechanism of apoptosis was further investigated by determining the levels of p53, p21/WAF1, FasL (Fas ligand), and sFas (Fas/APO-1). The extract from S. triloba induced a more pronounced enrichment in cytoplasmic mono- and oligonucleosomes than that from S. dominica (p < 0:05) in T47D cells. In response to the extract from S. dominica, but not from S. triloba, the proapoptotic efficacy was specifically regulated by p21. Extracts from both Salvia spp. did not enhance p53 levels, and apoptosis induced by them was not caspase-8- or sFas/FasL-dependent. Thus, our findings indicate that S. triloba and S. dominica ethanolic extracts may be useful in breast cancer management/treatment via proapoptotic cytotoxic mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.