Abstract

Surface modification via adsorbates is significant for property prediction in nanostructures where surface effect is dominant. This is especially vital for zinc oxide (ZnO) nanowires (NWs) which has no native passivation layer. As water is an ubiquitous environmental factor and its aggregation on ZnO surface is favoured, molecular statics (MS) simulations are used to study the deformation of ZnO with surface water adsorption in the finite strain regime (up to 0.1). Three types of water covered surface structures are considered to examine their effects on the size-dependence of linear (Y0) and nonlinear (Y1) elastic moduli. The pathway of adsorption to impact NWs is identified by revealing the radial distribution of Y0, Y1 and residual stress for the NWs. The physical origins of the water adsorption effects are further discussed in terms of the layer-wise equilibrium structure and potential energy variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.