Abstract
This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter/workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components; direction-shearing, direction-plowing, magnitude-shearing and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine unknown process damping coefficients from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.