Abstract

Background and objectiveEstimating the risk of metastatic relapse is a major challenge to decide adjuvant treatment options in early-stage breast cancer (eBC). To date, distant metastasis-free survival (DMFS) analysis mainly relies on classical, agnostic, statistical models (e.g., Cox regression). Instead, we propose here to derive mechanistic models of DMFS. MethodsThe present series consisted of eBC patients who did not receive adjuvant systemic therapy from three datasets, composed respectively of 692 (Bergonié Institute), 591 (Paoli-Calmettes Institute, IPC), and 163 (Public Hospital Marseille, AP-HM) patients with routine clinical annotations. The last dataset also contained expression of three non-routine biomarkers. Our mechanistic model of DMFS relies on two mathematical parameters that represent growth (α) and dissemination (μ). We identified their population distributions using mixed-effects modeling. Critically, we propose a novel variable selection procedure allowing to: (i) identify the association of biological parameters with either α, μ or both, and (ii) generate an optimal candidate model for DMFS prediction. ResultsWe found that Ki67 and Thymidine Kinase-1 were associated with α, and nodal status and Plasminogen Activator Inhibitor-1 with μ. The predictive performances of the model were excellent in calibration but moderate in discrimination, with c-indices of 0.72 (95% CI [0.48, 0.95], AP-HM), 0.63 ([0.44, 0.83], Bergonié) and 0.60 (95% CI [0.54, 0.80], IPC). ConclusionsOverall, we demonstrate that our novel method combining mechanistic and advanced statistical modeling is able to unravel the biological roles of clinicopathological parameters from DMFS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call