Abstract

The objective of this study was to develop a nanoscratch technique that can be used to measure the in situ toughness of bone at micro/nanostructural levels. Among the currently possible techniques, the surface scratch test may be conducted on very small regions, thus exhibiting a potential in determining the in situ failure behavior of materials. To adapt such a technique for assessing bone toughness at the micro/nanostructural levels and for limited stocks in small animal bone models (e.g. zebra finish and mice), a simple but reasonably accurate mechanistic model for the nanoscratch test was developed in this study. This model was based on the assumption that the removal energy of the tissue required during the nanoscratch test is the manifestation of the in situ toughness and the shear flow stress during the removal process is a measure of the in situ strength of bone. In addition, the experimental methodologies were developed to determine the elastic recovery force and frictional coefficients between the scratch tip and bone specimens that are required by the model. Finally, the efficacy of the nanoscratch technique was verified by testing bone samples from control (wild type), mild, and severe osteogenesis imperfecta (OI) mice, which have a distinct degree of brittleness. The experimental results indicated that the nanoscratch test could sensitively detect the in situ brittleness and strength of bone from the animal models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.