Abstract
Autotransporters are bacterial virulence factors that contain an N-terminal extracellular ("passenger") domain and a C-terminal β barrel ("β") domain that anchors the protein to the outer membrane. The β domain is required for passenger domain secretion, but its exact role in autotransporter biogenesis is unclear. Here we describe insights into the function of the β domain that emerged from an analysis of mutations in the Escherichia coli O157:H7 autotransporter EspP. We found that the G1066A and G1081D mutations slightly distort the structure of the β domain and delay the initiation of passenger domain translocation. Site-specific photocrosslinking experiments revealed that the mutations slow the insertion of the β domain into the outer membrane, but do not delay the binding of the β domain to the factor that mediates the insertion reaction (the Bam complex). Our results demonstrate that the β domain does not simply target the passenger domain to the outer membrane, but promotes translocation when it reaches a specific stage of assembly. Furthermore, our results provide evidence that the Bam complex catalyzes the membrane integration of β barrel proteins in a multistep process that can be perturbed by minor structural defects in client proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.