Abstract
IntroductionAutonomic dysreflexia (AD) is a potentially life-threatening consequence in high (above T6) spinal cord injury that involves multiple incompletely understood mechanisms. While peripheral arteriolar vasoconstriction, which controls systemic vascular resistance, is documented to be pronounced during AD, the pathophysiological neurovascular junction mechanisms of this vasoconstriction are undefined. One hypothesized mechanism is increased neuronal release of norepinephrine and co-transmitters. We tested this by examining the effects of blockade of pre-synaptic neural release of norepinephrine and co-transmitters on cutaneous vasoconstriction during AD, using a novel non-invasive technique; bretylium (BT) iontophoresis followed by skin blood flow measurements via laser doppler flowmetry (LDF). MethodsBretylium, a sympathetic neuronal blocking agent (blocks release of norepinephrine and co-transmitters) was applied iontophoretically to the skin of a sensate (arm) and insensate (leg) area in 8 males with motor complete tetraplegia. An nearby untreated site served as control (CON). Cutaneous vascular conductance (CVC) was measured (CVC = LDF/mean arterial pressure) at normotension before AD was elicited by bladder stimulation. The percent drop in CVC values from pre-AD vs. AD was compared among BT and CON sites in sensate and insensate areas. ResultsThere was a significant effect of treatment but no significant effect of limb/sensation or interaction of limb x treatment on CVC. The percent drop in CVC between BT and CON treated sites was 25.7±1.75 vs. 39.4±0.87, respectively (P = 0.004). ConclusionBretylium attenuates, but does not fully abolish vasoconstriction during AD. This suggests release of norepinephrine and cotransmitters from cutaneous sympathetic nerves is involved in cutaneous vasoconstriction during AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.