Abstract

Previously we reported the redox-neutral atom economic rhodium catalyzed coupling of terminal alkynes with carboxylic acids using the DPEphos ligand. We herein present a thorough mechanistic investigation applying various spectroscopic and spectrometric methods (NMR, in situ-IR, ESI-MS) in combination with DFT calculations. Our findings show that in contrast to the originally proposed mechanism, the catalytic cycle involves an intramolecular protonation and not an oxidative insertion of rhodium in the OH bond of the carboxylic acid. A σ-allyl complex was identified as the resting state of the catalytic transformation and characterized by X-ray crystallographic analysis. By means of ESI-MS investigations we were able to detect a reactive intermediate of the catalytic cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.