Abstract

This report describes mechanistic studies of the (salen)Co- and amine-cocatalyzed enantioselective ring opening of epoxides by fluoride. The kinetics of the reaction, as determined by in situ (19)F NMR analysis, are characterized by apparent first-order dependence on (salen)Co. Substituent effects, nonlinear effects, and reactivity with a linked (salen)Co catalyst provide evidence for a rate-limiting, bimetallic ring-opening step. To account for these divergent data, we propose a mechanism wherein the active nucleophilic fluorine species is a cobalt fluoride that forms a resting-state dimer. Axial ligation of the amine cocatalyst to (salen)Co facilitates dimer dissociation and is the origin of the observed cooperativity. On the basis of these studies, we show that significant improvements in the rates, turnover numbers, and substrate scope of the fluoride ring-opening reactions can be realized through the use of a linked salen framework. Application of this catalyst system to a rapid (5 min) fluorination to generate the unlabeled analog of a known PET tracer, F-MISO, is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.