Abstract

A study on the mechanism of the asymmetric intramolecular Stetter reaction is reported. This investigation includes the determination of the rate law, kinetic isotope effects, and competition experiments. The reaction was found to be first order in aldehyde and azolium catalyst or free carbene. A primary kinetic isotope effect was found for the proton of the aldehyde. Taken together with a series of competition experiments, these results suggest that proton transfer from the tetrahedral intermediate formed upon nucleophilic attack of the carbene onto the aldehyde is the first irreversible step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.