Abstract

We recently reported that the M184I 3TC resistant mutation reduces RT binding affinity to dNTP substrates. First, the HIV-1 M184I mutant vector displays reduced transduction efficiency compared to wild type (WT) RT vector, which could be rescued by both elevating the cellular dNTP concentration and incorporating WT RT molecules into the M184I vector particles. Second, the central polypurine tract (cPPT) mutation and M184I mutation additively reduced the vector transduction to almost undetectable levels, particularly in nondividing cells. Third, the M184I (−) cPPT vector became significantly more sensitive to 3TC than the M184I (+) cPPT vector, but not to AZT or Nevirapine in the dividing cells. Finally, this 3TC sensitizing effect of the cPPT inactivation of the M184I vector was reversed by elevating the dCTP level, but not by the other three dNTPs. These data support a mechanistic interaction between cPPT and M184I RT with respect to viral replication and sensitivity to 3TC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.