Abstract

AbstractThe chlorine evolution reaction holds a core role in the chemical industries and water‐treatment plants. To overcome the high power input supplied for Cl2 generation at an industrial scale an efficient and durable electrocatalyst is always on hunt. Double perovskite oxides have been used previously for oxygen evolution reaction (OER) and have shown outstanding results on the ground of dual surface active site mechanism. Here, La2CoMnO6 (LCMO) are explored for the electrochemical Cl2 and O2 generation. The electrocatalytic studies are performed in 5 m NaCl (pH ≈ 2.2) for chlorine evolution reaction (CER) and 1 m KOH (pH = 13.5) for OER. The LCMO shows enhanced catalytic activity with onset and overpotential of 75 and 280 mV for CER. Further, the kinetics of the catalytic reaction is determined by the Tafel slope values that is calculated to be 44 mV dec−1 for CER. The interfacial charge transfer resistance value at 11 Ω tells the insight mechanism by facilitating more interaction between electrode‐electrolyte interfaces. In addition to this, wettability analysis of LCMO shows a contact angle as low as 23°. The present study paves a way for double perovskites to be used as an electro‐catalyst for the chlor‐alkali process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call