Abstract

AbstractIntense present work is directed on the fabrication and application of Poly (serine) modified graphite carbon nanotube composite paste electrode (PSR/CNTPE) for determining the Riboflavin (RF). The surface qualities of the projected sensor were observed by Field Emission Scanning Electron Microscopy (FE‐SEM) and the conductivity by Electrochemical Impedance Spectroscopy (EIS) method. The electrochemical redox activity of the PSR/CNTPE to RF was investigated through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Outcomes displays that Poly (serine) in CNTPE enhanced the catalytic performance of the electrode towards the redox reaction of RF. The voltammetric response of PSR/CNTPE exhibited linear dependence for extended concentration range of RF from 6 μM to 50 μM with lower detection limit of 3.4×10−8 M.The PSR/CNTPE revealed to be reproducible, highly stable and successfully validated for the pharmaceutical, beverage and milk samples. The fabricated electrode was conducive and displayed two well‐separated oxidation signals for the solution containing two vitamins RF and Folic Acid (FA). The projected sensor is an adequate candidate for electrochemical sensing of RF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call