Abstract

The Achmatowicz rearrangement is a powerful method for the construction of pyranones from simple furan derivatives. Here, we describe the development of improved reaction conditions and an interrogation into the fate of the metal center during this interesting transformation. The reaction to form the synthetically important lactol, 6-hydroxy-2H-pyran-3(6H)-one (3), proceeds cleanly in the presence of tert-butyl hydroperoxide (TBHP, 2) using low loadings of VO(O(i)Pr)3 as catalyst. The nonaqueous conditions developed herein allow for easy isolation of product 3 and synthetically important derivatives, a key advantage of this new protocol. Detailed experimental, spectroscopic, and kinetic studies along with kinetic modeling of the catalytic cycle support a positive-order dependence in both furfurol and TBHP concentrations, first-order dependence in catalyst (VO(O(i)Pr)3), and a negative dependence on the 2-methyl-2-propanol (4) concentration. (51)V-NMR spectroscopic studies revealed that 2-methyl-2-propanol (4) competes with substrates for binding to the metal center, rationalizing its inhibitory effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.