Abstract

This work reports the characterization and application of two promising nanocatalysts for the thermal decomposition of ammonium perchlorate (AP). To obtain these composite materials, magnetite nanoparticles (Fe3O4 NPs) were functionalized with two different amine derivative groups, tertiary amine (Fe3O4 NPs-A1) and quaternary amine. X-ray photoelectron spectroscopy and differential scanning calorimetry provided mechanistic insights into the thermal decomposition of AP. Furthermore, tertiary and quaternary amine groups play a critical role, where the presence of an extra proton could favor an electron-proton transfer as the rate-determining step. Moreover, Fe3O4 NPs-A1 causes a diminution of the high-temperature decomposition of AP positively to 335 °C, increasing the energy release by 278 J g-1 and consequently affording the lowest activation energy (102 kJ mol-1), indicating a low degree of thermal stability, and accelerating the thermal decomposition of AP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.