Abstract

Synthesis gas (CO + H2) conversion is an important process in the transformation of coal, natural gas, or biomass into higher-value products. The explicit conversion into C2+ oxygenates on transition-metal-based catalysts suffers from a low selectivity, being a consequence of an imperative integration of C–O bond splitting and C–C coupling reactions. Recently, it has been demonstrated that a bimetallic CuCo catalyst has high higher alcohol selectivity under mild reaction conditions, but the details of the reaction mechanism on the surface are still elusive. In this work, we studied the formation of methane, methanol, and ethanol from syngas on a close-packed (111) and a stepped (211) CuCo surface combining density functional theory (DFT) and microkinetic modeling. We found the CuCo alloy to be a promising candidate catalyst, displaying the required coverage of CO and CHx on the surface to facilitate C–C coupling. In addition, we found the selectivity to be very structure sensitive: the CuCo (211) surface ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call