Abstract

The effects of surface structures on the selectivity of catalytic furfural conversion over platinum (Pt) catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Three Pt model surface structures, that is, flat Pt(111), stepped Pt(211), and Pt55 cluster are chosen to represent the terrace, step, and corner sites of Pt nanoparticle. DFT results show that the dominant reaction route (hydrogenation or decarbonylation) in furfural conversion depends strongly on the structures (or reactive sites). Using the size‐dependent site distribution rule, our microkinetic modeling results indicate the decarbonylation route prevails over smaller Pt particles less than 1.4 nm while the hydrogenation is the dominant reaction route over larger Pt catalyst particles at T = 473 K and = 93 kPa. This is in good agreement with the reported experimental observations. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3812–3824, 2015

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.