Abstract
Cyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results suggest that the base-assisted mechanism is preferred over the substrate-assisted pathway when one Mg2+ is present in the active site, in agreement with a previous theoretical study. The base-assisted mechanism resulted to be dissociative, with a potential energy barrier of 14.3 kcal/mol, very close to the experimental derived value. An interesting feature of the mechanism is the proton transfer from Lys129 to the phosphoryl group at the second transition state, event that could be helping in neutralizing the charge on the phosphoryl group upon the absence of a second Mg2+ ion. Furthermore, important insights into the mechanisms in terms of bond order and charge analysis were provided. These descriptors helped to characterize the synchronicity of bond forming and breaking events, and to characterize charge transfer effects. Local interactions at the active site are key to modulate the charge distribution on the phosphoryl group and therefore alter its reactivity.
Highlights
Cyclin-dependent kinases is a family of Serine/Threonine kinases that phosphorylate peptide substrates using adenosine triphosphate (ATP) as phosphate source with a unique function in the regulation of the cell cycle [1]
Two TSs were identified, which are flanked by an intermediate structure; the energy difference between the first transition state (TS1) and the intermediate structure (Int) is of only 1.1 kcal/mol
The energy difference between Int and TS2 is much more marked (7.2 kcal/mol), where the product state is reached with a reaction energy of 2.5 kcal/mol, which is very similar to the substrate-assisted mechanism (2.3 kcal/ mol)
Summary
Cyclin-dependent kinases is a family of Serine/Threonine kinases that phosphorylate peptide substrates using adenosine triphosphate (ATP) as phosphate source with a unique function in the regulation of the cell cycle [1]. As their names state, they depend on the binding of a cyclin protein in order to be fully activated [2,3,4] and on the phosphorylation of specific residues [5,6,7,8,9]. Phosphoryl transfer reaction in cyclin-dependent kinase 2: A QM/MM study. Bioinformatica, Simulacion y Modelado (CBSM)” at Universidad de Talca for providing computational resources to carry out the calculations reported in this study
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.