Abstract

The poor oxidation capacity of the Fe(II)/S2O82- [Fe(II)/PDS] system at pH > 3.0 has limited its wide application in water treatment. To unravel the underlying mechanism, this study systematically evaluated the possible influencing factors over the pH range of 1.0-8.0 and developed a mathematical model to quantify these effects. Results showed that ∼82% of the generated Fe(IV) could be used for pollutant degradation at pH 1.0, whereas negligible Fe(IV) contribution was observed at pH 7.5. This dramatic decline of Fe(IV) contribution with increasing pH dominantly accounted for the pH-dependent performance of the Fe(II)/PDS process. Unexpectedly, Fe(II) could consume ∼80% of the generated SO4•- non-productively under both acidic and near-neutral conditions, while the larger formation of Fe(III) precipitates at high pH inhibited the SO4•- contribution mildly. Moreover, the strong Fe(II) scavenging effect was difficult to be compensated for by slowing down the Fe(II) dosing rate. The competition of dissolved oxygen with PDS for Fe(II) was insignificant at pH ≤ 7.5, where the second-order rate constants for reactions of Fe(II) with oxygen were much lower than or comparable to that between Fe(II) and PDS. These findings could advance our understanding of the chemistry and application of the Fe(II)/PDS process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.