Abstract

Herein, we report on the hydrogenolysis of the biorenewable intermediate levoglucosanol (Lgol) over bifunctional platinum catalysts supported on silica–alumina in tetrahydrofuran solvent. 13C radiolabeling is used to confirm the ring rearrangement forming tetrahydrofurandimethanol. The reaction rate and product selectivity are comparable between 1.1 and 5.3 wt % Pt loadings, indicating that, at these metal loadings, the rate-limiting step is acid catalyzed. The measured zero-order dependence in hydrogen indicates that a non-rate-determining hydrogenation step follows an acid-catalyzed irreversible rate-determining step. The measured first-order dependence in Lgol indicates that the acid sites are not highly covered by Lgol. A physical mixture of Pt/SiO2 and SiAl catalysts displayed product selectivity similar to that of the Pt/SiAl catalyst, indicating that nanoscale proximity of metal and acid sites is not required to carry out Lgol hydrogenolysis selectively. As the Pt loading in Pt/SiAl catalysts is de...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.