Abstract

Recently, iron-based heterogenous catalysts have received much attention in the activation of peracetic acid (PAA) for generating reactive radicals to degrade organic pollutants, yet the PAA activation efficiency is compromised by the slow transformation from Fe(III) to Fe(II). Herein, considering the electron-donating ability of reducing sulfur species, a novel advanced oxidation process by combining pyrite and PAA (simplified as pyrite/PAA) for the abatement of tetracycline (TC) is proposed in this study. In the pyrite/PAA process, TC can be completely removed within 30 min under neutral conditions by the synergy of homogeneous and heterogenous Fe(II) species. CH3C(O)OO• is the main radical generated from the pyrite/PAA process responsible for TC abatement. The excellent activation properties of pyrite can be attributed to the superior electron-donating ability of reducing sulfur species to facilitate the reduction of Fe(III). Meanwhile, the complexation of leached Fe2+ with TC favors PAA activation and concomitant TC abatement. In addition, the degradation pathways of TC and the toxicity of the degradation intermediates are analyzed. The pyrite/PAA process shows an excellent TC abatement efficacy in the pH range of 4.0∼10.0. The coexistence of Cl−, HCO3−, and HPO42− exhibits negligible effect on TC abatement, while the HA slightly inhibits the abatement rate of TC. This study highlights the efficient activation of PAA by pyrite and the important role of sulfur in promoting the conversion of Fe(III) to Fe(II) in the pyrite/PAA process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call