Abstract

The catalytic deoxygenation of phenolic compounds is a crucial step in the valorization of biomass resources, which can effectively enhance the heating value and stability of primary biofuel. In this study, the catalytic mechanism of four Heusler alloy catalysts for the direct deoxidation pathway of phenol was studied through electronic structure regulation by element occupation. We found that Heusler alloys catalysts exhibit excellent catalytic activity in the dissociation activation of H2 and the cleavage of aryl hydroxyl bond (CAr-OH) bonds. The energy barriers for the direct cleavage of the CAr-OH bond in phenol on Ni2MoAl, Co2MoAl, Ni2NbAl and Ni2MoGa catalysts are 0.86, 0.95, 1.09, and 1.28 eV, respectively. And Y element of the X2YZ catalyst has a significant impact on this reaction, while the X element has a complex influence on the hydrogenation step of the unsaturated benzene ring. Microkinetic analysis further substantiates that the phenol (CAr-OH) bond cleavage step in the reaction exhibits a fast reaction rate and high extent of reaction. The reaction of hydroxyl hydrogenation to produce water exhibits the highest energy barrier, serving as the rate-determining step of the entire reaction. This issue could potentially be addressed by further fine-tuning the electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.