Abstract
Biodegradation, while cost-effective, is hindered by the requirement for specialized microorganisms and co-contaminants. Innovative biological technologies like the microbially driven Fenton reaction, hold promise for enhancing degradation efficiency. However, the intricate biochemical processes and essential steps for effective degradation in such systems have remained unclear. In this study, we harnessed the potential of the microbially driven Fenton reaction by employing Shewanella oneidensis MR-1 (MR-1). Our approach showcased remarkable efficacy in degrading a range of contaminants, including sulfadimethoxine (SDM), 4,4'-dibromodiphenyl ether (BDE-15) and atrazine (ATZ). Using SDM as a model contaminant of emergent contaminants (ECs), we unveiled that biodegradation relied on the generation of hydroxyl radicals (•OH) and involvement of oxidoreductases. Transcriptomic analysis shed light on the pivotal components of extracellular electron transfer (EET) during both anaerobic and aerobic periods. The presence of reactive oxidizing species induced cellular damage and impeded DNA repair, thereby affecting the Mtr pathway of EET. Moreover, the formation of vivianite hindered SDM degradation, underscoring the necessity of maintaining iron ions in the solution to ensure sustainable and efficient degradation. Overall, this study offers valuable insights into microbial technique for ECs degradation, providing a comprehensive understanding of degradation mechanisms during aerobic/anaerobic cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.