Abstract
Ethnopharmacological relevanceAccording to traditional Chinese medicine, Anxiety-induced cardiac blood insufficiency leads to palpitations and restlessness. Suanzaoren Decoction (SD) is effective in replenishing blood and promoting blood circulation. Clinical practice has shown that it has a better therapeutic effect on cardiac insufficiency. However, its mechanism of action is still unclear. Aim of the studyThe study aims to determine the mechanism by which SD treats chronic restraint stress (CRS)-induced anxiety-induced cardiac insufficiency (ACI). Materials and methodsSD was orally administered to mice with CRS-induced ACI. Firstly, we constructed an anxiety model in mice by CRS. Subsequently, SD was investigated to assess cardiac function and pathological changes through echocardiography, H&E staining, and Masson staining. Thirdly, the function of sympathetic and parasympathetic nerves was evaluated using enzyme-linked immunosorbent assay (ELISA) and enzyme activity assays. Network pharmacology and molecular docking were employed to predict potential targets for SD treatment of cardiac insufficiency. CaMKII expression was scrutinized utilizing publicly accessible databases. CaMKII was identified as a target through immunohistochemistry and Western Blot analysis in mouse hearts. Finally, the therapeutic mechanism of SD was confirmed in injured cardiomyocytes via Western Blot and quantitative PCR. ResultsSD exerted anxiolytic effects by increasing the frequency of entries into and the duration spent in open arms while reducing the time spent in the light chamber and increasing the number of transitions between light and dark chambers. Additionally, it mitigated cardiac insufficiency, as evidenced by the enhancement of left ventricular ejection fraction (LVEF) and attenuation of cardiomyocyte damage and inflammatory infiltration.However, SD did not alleviate the elevated norepinephrine (NE) and decreased Acetylcholine (Ach) in anxiety states. To investigate the mechanism of action of SD, we constructed a Drug-Component-Target-Disease network, identifying 13 potential active compounds. Additionally, leveraging bioinformatics analysis and molecular docking targeting heart diseases characterized by clinical left ventricular ejection fraction (LVEF), we focused on the CaMKII target. The ability of SD to modulate CaMKII expression and phosphorylation in the mouse heart was investigated using immunohistochemistry and Western blotting. SD was found to alleviate NE-injured cardiomyocytes by modulating the Ca2+/CaMKII/MEF2 and GATA4 pathways. ConclusionSD is a potential formula for the treatment of chronic restraint stress (CRS)-induced ACI that ameliorates cardiomyocyte injury and improves cardiac function. Its efficacy is associated with the inhibition of the Ca2+/CaMKII/MEF2 and GATA4 signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.