Abstract
Pincer-based (R2POCNR′2)PdCl complexes along with CuI cocatalyst catalyze the arylation of azoles with aryl iodides to give the 2-arylated azole products. Herein, we report an extensive mechanistic investigation for the direct arylation of azoles involving a well-defined and highly efficient (iPr2POCNEt2)PdCl (2a) catalyst, which emphasizes a rare PdII–PdIV–PdII redox catalytic pathway. Kinetic studies and deuterium labeling experiments indicate that the C–H bond cleavage on azoles occurs via two distinct routes in a reversible manner. Controlled reactivity of the catalyst 2a underlines the iodo derivative (iPr2POCNEt2)PdI (3a) to be the resting state of the catalyst. The intermediate species (iPr2POCNEt2)Pd-benzothiazolyl (4a) has been isolated and structurally characterized. A determination of reaction rates of compound 4a with electronically different aryl iodides has revealed the kinetic significance of the oxidative addition of the C(sp2)–X electrophile, aryl iodide, to complex 4a. Furthermore, the r...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.