Abstract
A mechanistic study of copper-catalyzed azide–alkyne cycloaddition (CuAAC) was examined using an enantioposition-selective asymmetric CuAAC as a probe reaction system. Based on the observed asymmetric amplification (a positive nonlinear effect), we proposed that a dimeric chiral copper complex is involved as a reactive intermediate in the copper-catalyzed azide–alkyne cycloaddition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.