Abstract

While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m−1·kg−1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0–1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call