Abstract

Aqueous phase dehydration of 1‐propanol over H‐ZSM‐5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulations of the mimicking aqueous phase H‐ZSM‐5 unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol–propanol, the propanol–water, and the trimeric propanol–propanol–water complexes are formed at high propanol concentrations in aqueous phase, which provide a kinetically feasible dehydration reaction channel of 1‐propanol to propene. The calculation results indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration. © 2016 American Institute of Chemical Engineers AIChE J, 63: 172–184, 2017

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.