Abstract

Germplasm conservation strongly depends on the desiccation tolerance (DT) of seeds. Xerophytic seeds have strong desiccation resistance, which makes them excellent models to study DT. Although some experimental strategies have been applied previously, most methods are difficult to apply to xerophytic seeds. In this review, we attempted to synthesize current strategies for the study of seed DT and provide an in-depth look at Caragana korshinskii as an example. First, we analyze congenital advantages of xerophytes in the study of seed DT. Second, we summarize several strategies used to study DT and illustrate a suitable strategy for xerophytic species. Then, based on our previous studies work with C. korshinskii, a feasible technical strategy for DT re-establishment is provided and we provide illustrate some special molecular mechanisms seen in xerophytic seeds. Finally, several steps to unveil the DT mechanism of xerophytic seeds are suggested, and three scientific questions that the field should consider are listed. We hope to optimize and utilize this strategy for more xerophytic species to more systematically decipher the physiological and molecular processes of seed DT and provide more candidate genes for molecular breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.