Abstract

The reaction mechanism for the in situ prepared Pd-Cy*Phine catalyst used in copper-free Sonogashira coupling was investigated using density functional theory. In addition, the significance of the meta-terarylphosphine ligand architecture of Cy*Phine was probed, as it had been previously shown experimentally to augment catalytic activity relative to its biarylphosphine analogue, XPhos. The calculated reaction barriers and free energies for the steps in the catalytic cycle suggest that the suppression of a dearomative rearrangement pathway is likely to be an important feature for the improved catalytic performance observed for the Pd-Cy*Phine system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.