Abstract

The discovery of mutations within the kinase domain of the epidermal growth factor receptor (EGFR) gene has enabled a new era of targeted therapy in non-small cell lung cancer (NSCLC). Drugs belonging to the family of tyrosine kinase inhibitors (TKIs) are designed to bind ATP binding cleft, anyway, the occurrence of aminoacidic mutations decreases the effectiveness of the antitumoral treatment. Despite many efforts has been already made, the impact of the mutations on conformation and stability of EGFR-ATP complexes is still not fully understood. Therefore, we investigated the effect of mutations that leads to changes in Michaelis-Menten constant (K m) using dynamic docking simulations. We focused on six different EGFR forms in relation to different mutation states, then we found a good correlation between the calculated ATP affinities and K m values. Moreover, since dynamic switching of TK-EGFR from the inactive towards the active state is known to regulate the kinase activity, we observed that ATP induces the inwards movement of the αC-helix with the Lys745 close to Glu762 in all cases. This means that ATP binding should be the first step in promoting the conformational shift to the active state. Finally, we highlighted for the first time the key contribution of water hydrogen bond and water-bridge networks in the modulation of ATP affinity. The identified mutant-specific ATP binding patterns and conformational features could be much useful to guide cancer therapy and develop more personalized medicine. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call