Abstract
AbstractDensity functional theory (DFT) calculations were carried out to elucidate the mechanism of alcohol oxidation by a Cu(III) anilidosalen complex. The study considered singlet, broken‐symmetry singlet, and triplet states. During the first step the alcoholate binds to the copper, inducing valence tautomerism, transforming the Cu(III) complex into a Cu(II)‐alkoxyradical adduct. Subsequently, an “aniline” ring abstracts a hydrogen from the substrate with a low barrier, yielding a Cu(I) aniline complex and the aldehyde, akin to galactose oxidase. Catalyst re‐oxidation is coupled to dioxygen reduction. Initially, dioxygen is reduced by Cu(I) into superoxide, which binds to the metal. Protonation then yields either a Cu(II)‐hydrosuperoxo or a Cu(III)‐hydroperoxo adduct. Further protonation closes the catalytic cycle by releasing hydrogen peroxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.