Abstract

It was important to regulate the formation of Fe-hydroxyl during ferrate (Fe(VI)) oxidation and hydrolysis which was beneficial for interfacial adsorption of natural organic matter (NOM). Based on the influence of weak magnetic field (WMF) on the physical and chemical characteristics of particles in chemistry. This study investigated the effect of WMF on Fe(VI) oxidation and Fe(III) flocculation performance by regulating iron species during hydrolysis, for NOM removal. Results indicated WMF efficiently accelerate the removal of NOM that the reactions rate constants in magnetization system was twice as much as the control group. With the structure and electrochemical analysis, WMF enhanced Hydrogen-bond and caused much polar hydroxyl groups combined with iron ions, further triggered Fe(III) transformed to amorphous Fe-hydroxide and ferrihydrite with large specific surface area and high surface activity which removed the pollutants by adsorption and co-precipitation, instead of crystalloid Fe2O3 and Fe3O4. In addition, the nucleation aggregation behavior and interaction energy of Fe-(oxy)hydroxide revealed that the lower free energy obtained in magnetization system, could lead to higher nucleation rate, and promoted the aggregation. WMF increased hydrophobicity of Fe-(oxy)hydroxides, further more easily adsorbed with humic acid (HA) and bovine serum albumin (BSA) with lower interaction energies than in control group. The selective removal mechanism of Fe-(oxy)hydroxide hardly to aggregate with pollutants which caused by the difference of electrostatic interaction, was illustrated that electronegativity HA and SA were liable to electrostatically attract with Fe-(oxy)hydroxide and removed while the low electronegativity BSA was difficult to remove which its attraction was weakened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.