Abstract
The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case–control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.