Abstract
Platinum compounds are among the most used DNA-damaging anticancer drugs, however they can also be tailored to target biological substrates different from DNA, for instance enzymes involved in cancer progression. We recently reported that some platinum complexes with three labile ligands inhibit matrix metalloproteinase activity in a selective way. We have now extended the investigation to a series of platinum complexes having three chlorido or one chlorido and a dimethylmalonato leaving ligands. All compounds are strong inhibitors of MMP-3 by a noncompetitive mechanism, while platinum drugs in clinical use are not. Structural investigations reveal that the platinum substrate only loses two labile ligands, which are replaced by an imidazole nitrogen of His224 and a hydroxyl group, while it retains one chlorido ligand. A chlorido and a hydroxyl group are also present in the zinc complex inhibitor of carboxypeptidase A, whose active site has strong analogies with that of MMP-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.