Abstract

Organophosphorus-catalyzed Staudinger ligation between carboxylic acids and azides in the presence of phenylsilane reductant produces amides. NMR-based mechanistic investigations revealed that the catalytic Staudinger ligation does not proceed via reduction of phosphine oxide but rather via reduction of iminophosphorane, which can subsequently undergo several transformations to produce the amide product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.