Abstract

Recent theoretical and experimental findings have motivated the use of 3d transition metals as alloying elements to improve the performance of Au for the electro-oxidation of borohydride. In this paper, we provide mechanistic insights into the electrochemical oxidation of borohydride on pure Au and Au-3d alloys (Au3M with M = Cr, Mn, Fe, Co, Ni) using first principles calculations. We found that the initial oxidative adsorption of borohydride is the least exothermic among the elementary reactions considered for the complete eight-electron oxidation process. Interestingly, Au-3d metal alloy surfaces promote this oxidation step at a lower electrode potential compared to pure Au due the enhanced stability of borohydride on these alloy surfaces. The most negative borohydride oxidation potential is achieved by M = Co, followed by Fe, Ni, Mn, and Cr in order of increasing electrode potential. Subsequent to the initial oxidative adsorption of borohydride, the dehydrogenations of BH3*, BH2OH*, and BH(OH)2* are endothermic on pure Au at very low potentials. However, these activated and possibly limiting elementary reaction steps are more exothermic on Au-3d alloys than on pure Au. Following the adsorption of borohydride on the surface, all elementary reaction steps for the complete electro-oxidation process proceed downhill in energy at a lower electrode potential on Au-3d alloys than on pure Au.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.