Abstract

Two Pd/γ-Al2O3 catalysts are examined for the vapor phase hydrogenation of nitrobenzene over the temperature range of 60–200 °C. A 1 wt % catalyst is selected as a reference material that is diluted with γ-alumina to produce a 0.3 wt % sample, which is representative of a metal loading linked to a candidate industrial specification aniline synthesis catalyst. Cyclohexanone oxime is identified as a by-product that is associated with reagent transformation. Temperature-programed infrared spectroscopy and temperature-programed desorption measurements of chemisorbed CO provide information on the morphology of the crystallites of the higher Pd loading catalyst. The lower Pd loading sample exhibits a higher aniline selectivity by virtue of minimization of product overhydrogenation. Reaction testing measurements that were undertaken employing elevated hydrogen flow rates lead to the proposition of separate reagent and product-derived by-product formation pathways, each of which occurs in a consecutive manner. A global reaction scheme is proposed that defines the by-product distribution accessible by the grades of catalyst examined. This information is helpful in defining product purification procedures that would be required in certain heat recovery scenarios connected with large-scale aniline production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call