Abstract

β-ketoacyl ACP synthase I (KasA) has been considered as a promising drug target against Tuberculosis because it is known to play a pivotal role in the survival of Mycobacterium Tuberculosis, a causative agent of Tuberculosis. KasA catalyzes the reaction elongating only the acyl chain that is 16 carbon atoms in length or longer, but the molecular details of how KasA selectively recognizes only the substrate longer than a certain length still remain unknown. In the present study, this challenging subject is addressed, and to this end, molecular dynamics (MD) simulations and free energy calculations for actual substrate binding process are carried out. The results illustrate that the substrate specificity of KasA is highly linked to its cooperativity and this cooperativity is realized through the activation of catalytic residues. Through these results, the mechanistic details of how KasA can be selectively activated only by the substrate with a proper length are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.