Abstract

Two new models for cytochrome P450 in which the thiolate axial ligand is replaced by a RSO(3)(-) group, form oxo-iron(IV) porphyrin pi-cation radicals as sole oxidation products in "peroxo shunt" reactions independent of the nature of the employed solvent (polar or non-polar) and electronic nature of the porphyrin rings. Although the properties of the solvent and push-pull effects from the porphyrin rings do not affect the mode of the O-O bond cleavage (heterolytic or homolytic) in these models, they strongly affect the rate and mechanism of each reaction step leading to the formation of the high-valent iron intermediates. This article reports the results of mechanistic studies involving the measurements of the rate of oxo-iron(IV) porphyrin pi-cation radical formation from the enzyme mimics of P450 for different oxidant concentration, temperature and pressure in selected organic solvents. Extraction of the appropriate rate constants and activation parameters for the reactions studied enable a detailed discussion of the effects of solvent and electronic nature of the porphyrin rings on the position of the first pre-equilibrium involving formation of the acylperoxo-iron(III) porphyrin intermediate, as well as on the rate of heterolytic O-O bond cleavage leading to the formation of the high-valent iron species. Furthermore, an unusual effect of solvent on the kinetics of oxo-iron(IV) porphyrin pi-cation radical formation in methanol is demonstrated and discussed in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call