Abstract

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.