Abstract

SummaryThe vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3‐methylmercaptopropionate (MMPA)‐coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA‐CoA dehydrogenase, catalyzes the dehydrogenation of MMPA‐CoA to generate MTA‐CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call