Abstract

Herein, we adopted a new paradigm for developing a high-performance gas sensor by leveraging the mixed spinel ZnFe2O4 structure (mZFO) to enhance the adsorption of NOx molecules. Material characterization reveals the formation of the mZFO due to the cation inversion in lattice sites. The estimated value of the inversion degree is observed to shift from 0.78 to 0.39 with an increase in the calcination temperature. The mZFO nanoparticles calcined at 500 °C show exceptional sensing performance due to their suitable grain size (∼2 times Debye length), neck diameter, and surface area. The sensing studies conducted at various NOx concentrations indicate that the sensor can detect ppb level of NOx with a detection limit of about 9 ppb at room temperature. The detailed sensing mechanism is elucidated based on the density functional theory calculations (DFT) and Bader charge analysis. The outstanding sensor performance is attributed to the formation of a mixed spinel structure, wherein the adsorption energy of NOx (∼-0.6 eV) in the presence of surface adsorbed oxygen is higher than that of the normal spinel structure (∼-0.1 eV). Furthermore, the sensor exhibited a fast response and recovery times (7 and 92 s at 800 ppb NO2), excellent stability, and selectivity. The practical suitability of the mZFO sensor was studied by analyzing the vehicle exhaust emissions. We strongly believe this work would pave a novel approach to developing a high-potential gas sensor by modifying the cation distributions in the spinel ferrites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call