Abstract
The logarithm of the pseudo-first-order rate coefficient k for the aquation of Co(NH3)5X(3–n)+ can be represented by a quadratic equation in the pressure P, or, better, by[Formula: see text]where P is in kbar, [Formula: see text] is the volume of activation at P = 0, and x is the increase in the number of water molecules solvating the complex as it goes to the transition state. For [Formula: see text]Cl−, Br−,[Formula: see text] and [Formula: see text] at 25° [Formula: see text] and ionic strength I = 0.1 M LiClO4/HClO4, [Formula: see text] −10.6, −9.2, −6.3, and +16.8 cm3 mol−1, and x = 8.0, 4.1, 3.9, 1.9, and −4.2; for Xn− = NCS−, the mean ΔV* from P = 0.001 to 2.5 kbar at 88° is −4 cm3 mol−1. Detailed consideration of these data, especially their correlation with the molar volume of reaction by a straight line of unit slope for [Formula: see text] Cl−, Br−, NO3−, and H2O, provides strong evidence for a dissociative interchange mechanism. For [Formula: see text] the separating entity is probably HN3 rather than [Formula: see text] For Xn− = NCS−, aquation is incomplete, at practical complex concentrations; at 88.0°, 1 bar, and I = 0.1 M LiClO4/HClO4, k = 3.3 × 10−6 s−1 and the stability constant of Co(NH3)5NCS2+ is 490 M−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.