Abstract

Therapeutic proteins have emerged as a significant class of pharmaceutical agents over the past several decades. The potency, rapid elimination, and systemic side effects have prompted the need of spatiotemporally controlled release for proteins maybe more than any other active therapeutic molecules. This work examines the release of two model protein compounds, bovine serum albumin (BSA) and an anti-integrin antibody (AI), from electrospun polycaprolactone (PCL) nanofiber mats. The anti-integrin antibody was chosen as a model of antibody therapy; in particular, anti-integrin antibodies are a promising class of therapeutic molecules for cancer and angiogenic diseases. The release kinetics were studied experimentally and interpreted in the framework of a recently published theory of desorption-limited drug release from nondegrading--or very slowly degrading--fibers. The results are consistent with a protein release mechanism dominated by desorption from the polymer surface, while the polycaprolactone nanofibers are not degrading at an appreciable rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.