Abstract

In the present study, Atazanavir sulfate-loaded solid lipid nanoparticles (ATZ-SLNs) were developed and characterized for oral bioavailability enhancement and lymphatic absorption. ATZ-SLNs were formulated by emulsion-solvent evaporation technique using hydrogenated castor oil and sodium oleate. The optimized formulation had a mean particle size of 190.1 ± 2.45 nm, the zeta potential of −42.63 ± 2.46 mV and entrapment efficiency of 94.26 ± 2.12%. Transmission electron microscopy and Field emission-scanning electron microscopy morphology indicated discrete and round structures without aggregation. In-vitro drug release study showed controlled drug release of 80.36% in 12 h in simulated intestinal fluid. Cell-line study in Caco-2 cells showed increased permeability upon SLN formulation and mode of cellular uptake of SLN as clathrin and caveoli mediated endocytosis. In-vivo pharmacokinetic study in rats indicated increased oral bioavailability using ATZ-SLNs by 200% compared to suspension formulation. A lymphatic transport study revealed that SLNs were transported via lymphatic vessels. In organ biodistribution study, peyer's patch region showed a 4.5 fold higher uptake of ATZ through ATZ-SLNs formulation than non-peyer's patch region and high accumulation in spleen and brain. This delivery approach could maximize the drug concentrations to the lymphatic system leading to effective therapy for HIV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call