Abstract

AbstractPotassium‐ion batteries (KIBs) are considered more appropriate for grid‐scale storage than lithium‐ion batteries (LIBs) due to similar operating chemistry, abundant precursors, and compatibility with low‐cost graphite anodes. However, a larger ion reduces rate capabilities and exacerbates capacity fading from volumetric expansion. Herein, conductive polymer, poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), is substituted for standard insulating polyvinylidene fluoride (PVDF). Half‐cells using carbon black (CB) in continuously conductive PEDOT:PSS/CB binder outperforms PVDF/CB by mitigating electrically isolated “dead” graphite, improving 100 cycle capacity retention at C/10 from 63 to 80%. Enhanced electrical contact with PEDOT:PSS/CB also reduces ion impedance and improves rate capabilities. Without CB however, PEDOT:PSS binder performs poorly in electrochemical studies despite promising ex situ electronic conductivity. This discrepancy is mechanistically elucidated through identification of redox activity between PEDOT:PSS and K+ which results in high impedances in the anode operating voltage window. Additionally, the impact of conducting binder on mechanical properties and thermal safety of the anode is investigated. Brittleness and poor wettability of PEDOT:PSS are identified as issues, but greater stability against reactive KC8 reduces overall heat generation. Binder substitution offers a promising means of mitigating issues with current KIB anodes regardless of active material, and the work herein addresses issues towards further improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.